Multilevel Gradient Uzawa Algorithms for Symmetric Saddle Point Problems

نویسندگان

  • Constantin Bacuta
  • Lu Shu
چکیده

In this paper, we introduce a general multilevel gradient Uzawa algorithm for symmetric saddle point systems. We compare its performance with the performance of the standard Uzawa multilevel algorithm. The main idea of the approach is to combine a double inexact Uzawa algorithm at the continuous level with a gradient type algorithm at the discrete level. The algorithm is based on the existence of a priori multilevel sequences of nested approximation pairs of spaces, but the family does not have to be stable. To ensure convergence, the process has to maintain an accurate representation of the residuals at each step of the inexact Uzawa algorithm at the continuous level. The residual representations at each step are approximated by projections or representation operators. Sufficient conditions for ending the iteration on a current pair of discrete spaces are determined by computing simple indicators that involve consecutive iterations. When compared with the standard Uzawa multilevel algorithm, our proposed algorithm has the advantages of automatically selecting the relaxation parameter, lowering the number of iterations on each level, and improving on running time. By carefully choosing the discrete spaces and the projection operators, the error for the second component of the solution can be significantly improved even when comparison is made with the discretization on standard families of stable pairs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilevel discretization of Symmetric Saddle Point Systems without the discrete LBB Condition

Using an inexact Uzawa algorithm at the continuous level, we study the convergence of multilevel algorithms for solving saddle-point problems. The discrete stability Ladyshenskaya-Babušca-Brezzi (LBB) condition does not have to be satisfied. The algorithms are based on the existence of a multilevel sequence of nested approximation spaces for the constrained variable. The main idea is to maintai...

متن کامل

A Unified Approach for Uzawa Algorithms

We present a unified approach in analyzing Uzawa iterative algorithms for saddle point problems. We study the classical Uzawa method, the augmented Lagrangian method, and two versions of inexact Uzawa algorithms. The target application is the Stokes system, but other saddle point systems, e.g., arising from mortar methods or Lagrange multipliers methods, can benefit from our study. We prove con...

متن کامل

Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems

In this paper, we consider some nonlinear inexact Uzawa methods for iteratively solving linear saddle-point problems. By means of a new technique, we first give an essential improvement on the convergence results of Bramble-Paschiak-Vassilev for a known nonlinear inexact Uzawa algorithm. Then we propose two new algorithms, which can be viewed as a combination of the known nonlinear inexact Uzaw...

متن کامل

Symmetric part preconditioning of the CGM for Stokes type saddle-point systems

Saddle-point problems arise as mathematical models in various applications and have been a subject of intense investigation, e.g. [5, 11, 23, 26]. Besides the widespread Uzawa type methods, an efficient way of solving such problems is the preconditioned conjugate gradient method. In this paper we consider nonsymmetric formulations of saddle-point systems, following [12]. For nonsymmetric proble...

متن کامل

Residual reduction algorithms for nonsymmetric saddle point problems

In this paper, we introduce and analyze Uzawa algorithms for non-symmetric saddle point systems. Convergence for the algorithms is established based on new spectral results about Schur complements. A new Uzawa type algorithm with optimal relaxation parameters at each new iteration is introduced and analyzed in a general framework. Numerical results supporting the efficiency of the algorithms ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2013